Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans.

نویسندگان

  • Bente Kiens
  • Erik A Richter
چکیده

The utilization of muscle triacylglycerols was studied during and after prolonged bicycle ergometer exercise to exhaustion in eight healthy young men. Two days before exercise and in the postexercise recovery period, subjects were fed a carbohydrate-rich diet (65-70% of energy from carbohydrates). Exercise decreased muscle glycogen concentrations from 533 ± 18 to 108 ± 10 mmol/kg dry wt, whereas muscle triacylglycerol concentrations were unaffected (49 ± 5 before vs. 49 ± 8 mmol/kg dry wt after exercise). During the first 18 h after exercise, muscle glycogen concentrations were restored to 409 ± 20 mmol/kg dry wt. In contrast, muscle triacylglycerol concentrations decreased ( P < 0.05) to a nadir of 38 ± 5 mmol/kg dry wt, and muscle lipoprotein lipase activity increased by 72% compared with values before exercise. Pulmonary respiratory exchange ratio values of 0.80-0.82 indicated a relatively high fractional lipid combustion despite the high carbohydrate intake. From 18 to 42 h of recovery, muscle glycogen synthesis was slow and muscle triacylglycerol concentrations and lipoprotein lipase activity were restored to the preexercise values. It is concluded that muscle triacylglycerol concentrations are not diminished during exhaustive glycogen-depleting exercise. However, in the postexercise recovery period, muscle glycogen resynthesis has high metabolic priority, resulting in postexercise lipid combustion despite a high carbohydrate intake. It is suggested that muscle triacylglycerols, and probably very low density lipoprotein triacylglycerols, are important in providing fuel for muscle metabolism in the postexercise recovery period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle fat metabolism after exercise in humans: influence of fat availability.

The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performe...

متن کامل

Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: is there a controversy?

Intramuscular triacylglyerols (IMTGs) represent a potentially important energy source for contracting human skeletal muscle. Although the majority of evidence from isotope tracer and (1)H-magnetic resonance spectroscopy (MRS) studies demonstrate IMTG utilization during exercise, controversy regarding the importance of IMTG as a metabolic substrate persists. The controversy stems from studies th...

متن کامل

Skeletal muscle oxidative capacity in young and older women and men.

It has been suggested that a decline in skeletal muscle oxidative capacity is a general consequence of aging in humans. However, previous studies have not always controlled for the effects of varying levels of physical activity on muscle oxidative capacity. To test the hypothesis that, when matched for comparable habitual physical activity levels, there would be no age-related decline in the ox...

متن کامل

Lipid oxidation fuels recovery from exhaustive exercise in white muscle of rainbow trout.

The oxidative utilization of lipid and carbohydrate was examined in white muscle of rainbow trout (Oncorhynchus mykiss) at rest, immediately after exhaustive exercise, and for 32-h recovery. In addition to creatine phosphate and glycolysis fueling exhaustive exercise, near maximal activation of pyruvate dehydrogenase (PDH) at the end of exercise points to oxidative phosphorylation of carbohydra...

متن کامل

Effect of H1- and H2-histamine receptor blockade on postexercise insulin sensitivity

Following a bout of dynamic exercise, humans experience sustained postexercise vasodilatation in the previously exercised skeletal muscle which is mediated by activation of histamine (H1 and H2) receptors. Skeletal muscle glucose uptake is also enhanced following dynamic exercise. Our aim was to determine if blunting the vasodilatation during recovery from exercise would have an adverse effect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 275 2  شماره 

صفحات  -

تاریخ انتشار 1998